Mathematical model  

From The Art and Popular Culture Encyclopedia

Jump to: navigation, search

Related e

Google
Wikipedia
Wiktionary
Wiki Commons
Wikiquote
Wikisource
YouTube
Shop


Featured:
Train wreck at Montparnasse (October 22, 1895) by Studio Lévy and Sons.
Enlarge
Train wreck at Montparnasse (October 22, 1895) by Studio Lévy and Sons.

A mathematical model is a description of a system using mathematical concepts and language. The process of developing a mathematical model is termed mathematical modelling. Mathematical models are used not only in the natural sciences (such as physics, biology, earth science, meteorology) and engineering disciplines (e.g. computer science, artificial intelligence), but also in the social sciences (such as economics, psychology, sociology and political science); physicists, engineers, statisticians, operations research analysts and economists use mathematical models most extensively. A model may help to explain a system and to study the effects of different components, and to make predictions about behaviour.

Mathematical models can take many forms, including but not limited to dynamical systems, statistical models, differential equations, or game theoretic models. These and other types of models can overlap, with a given model involving a variety of abstract structures. In general, mathematical models may include logical models, as far as logic is taken as a part of mathematics. In many cases, the quality of a scientific field depends on how well the mathematical models developed on the theoretical side agree with results of repeatable experiments. Lack of agreement between theoretical mathematical models and experimental measurements often leads to important advances as better theories are developed.

See also




Unless indicated otherwise, the text in this article is either based on Wikipedia article "Mathematical model" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on original research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools