Class (set theory)  

From The Art and Popular Culture Encyclopedia

Jump to: navigation, search

Related e



In set theory and its applications throughout mathematics, a class is a collection of sets (or sometimes other mathematical objects) which can be unambiguously defined by a property that all its members share. The precise definition of "class" depends on foundational context. In work on Zermelo–Fraenkel set theory, the notion of class is informal, whereas other set theories, such as Von Neumann–Bernays–Gödel set theory, axiomatize the notion of "class", e.g., as entities that are not members of another entity.

Every set is a class, no matter which foundation is chosen. A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems.

Unless indicated otherwise, the text in this article is either based on Wikipedia article "Class (set theory)" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on research by Jahsonic. See Art and Popular Culture's copyright notice.

Personal tools