Formal language  

From The Art and Popular Culture Encyclopedia

Jump to: navigation, search

Related e



A formal language is a set of words, i.e. finite strings of letters, or symbols. The inventory from which these letters are taken is called the alphabet over which the language is defined. A formal language is often defined by means of a formal grammar. Formal languages are a purely syntactical notion, so there is not necessarily any meaning associated with them. To distinguish the words that belong to a language from arbitrary words over its alphabet, the former are sometimes called well-formed words (or, in their application in logic, well-formed formulas).

Formal languages are studied in the fields of logic, computer science and linguistics. Their most important practical application is for the precise definition of syntactically correct programs for a programming language. The branch of mathematics and computer science that is concerned only with the purely syntactical aspects of such languages, i.e. their internal structural patterns, is known as formal language theory.

Although it is not formally part of the language, the words of a formal language often have a semantical dimension as well. In practice this is always tied very closely to the structure of the language, and a formal grammar (a set of formation rules that recursively defines the language) can help to deal with the meaning of (well-formed) words. Well-known examples for this are "Tarski's definition of truth" in terms of a T-schema for first-order logic, and compiler generators like lex and yacc.

Unless indicated otherwise, the text in this article is either based on Wikipedia article "Formal language" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools