Chemoreceptor  

From The Art and Popular Culture Encyclopedia

(Redirected from Chemoreception)
Jump to: navigation, search

Related e

Google
Wikipedia
Wiktionary
Wiki Commons
Wikiquote
Wikisource
YouTube
Shop


Featured:
Train wreck at Montparnasse (October 22, 1895) by Studio Lévy and Sons.
Enlarge
Train wreck at Montparnasse (October 22, 1895) by Studio Lévy and Sons.

A chemoreceptor, also known as chemosensor, is a sensory receptor that transduces a chemical signal into an action potential. In more general terms, a chemosensor detects certain chemical stimuli in the environment.

Contents

Classes

There are two main classes of the chemosensor: direct and distance.

Cellular antennae

Within the biological and medical disciplines, recent discoveries have noted that primary cilia in many types of cells within eukaryotes serve as cellular antennae. These cilia play important roles in chemosensation. The current scientific understanding of primary cilia organelles views them as "sensory cellular antennae that coordinate a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation."

Systems affected

Breathing rate

Chemoreceptors detect the levels of carbon dioxide in the blood. To do this, they monitor the concentration of hydrogen ions in the blood, which decrease the pH of the blood. This is a direct consequence of an increase in carbon dioxide concentration, because carbon dioxide becomes carbonic acid in an aqueous environment.

The response is that the respiratory centre (in the medulla), sends nervous impulses to the external intercostal muscles and the diaphragm, via the intercostal nerve and the phrenic nerve, respectively, to increase breathing rate and the volume of the lungs during inhalation.

Chemoreceptors that affect breathing rate are broken down into two categories.Template:Citation needed

  • central chemoreceptors are located on the ventrolateral surface of medulla oblongata and detect changes in pH of cerebrospinal fluid. They do not respond to a drop in oxygen, and eventually desensitize.
  • peripheral chemoreceptors: Aortic body detects changes in blood oxygen and carbon dioxide, but not pH, while carotid body detects all three. They do not desensitize. Their effect on breathing rate is less than that of the central chemoreceptors.

Heart rate

Chemoreceptors in the medulla oblongata, carotid arteries, and aortic arch detect the levels of carbon dioxide in the blood, in the same way as applicable in the Breathing Rate section.Template:Citation needed

In response to this high concentration, a nervous impulse is sent to the cardiovascular centre in the medulla, which will then feedback to the sympathetic ganglia, increasing nervous impulses here, and prompting the sinoatrial node to stimulate more contractions of the myogenic cardiac muscle, increasing heart rate by causing the secretion of nor-adrenaline directly on to the sinoatrial node.Template:Citation needed

Sense organs

In taste sensation, the tongue is composed of 5 different taste buds: salty, sour, sweet, bitter, and savory. The salty and sour tastes work directly through the ion channels, the sweet and bitter taste work through G protein-coupled receptors, and the savory sensation is activated by glutamate.

Noses in vertebrates and antennae in many invertebrates act as distance chemoreceptors. Molecules are diffused through the air and bind to specific receptors on olfactory sensory neurons, activating an opening ion channel via G-proteins.Template:Citation needed

When inputs from the environment are significant to the survival of the organism, the input must be detected. As all life processes are ultimately based on chemistry it is natural that detection and passing on of the external input will involve chemical events. The chemistry of the environment is, of course, relevant to survival, and detection of chemical input from the outside may well articulate directly with cell chemicals.

For example: The emissions of a predator's food source, such as odors or pheromones, may be in the air or on a surface where the food source has been. Cells in the head, usually the air passages or mouth, have chemical receptors on their surface that change when in contact with the emissions. The change does not stop there. It passes in either chemical or electrochemical form to the central processor, the brain or spinal cord. The resulting output from the CNS (central nervous system) makes body actions that will engage the food and enhance survival.

See also




Unless indicated otherwise, the text in this article is either based on Wikipedia article "Chemoreceptor" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on original research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools