Brain  

From The Art and Popular Culture Encyclopedia

Jump to: navigation, search

Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations. ... And by the same organ we become mad and delirious, and fears and terrors assail us, some by night, and some by day, and dreams and untimely wanderings, and cares that are not suitable, and ignorance of present circumstances, desuetude, and unskillfulness. All these things we endure from the brain, when it is not healthy...—Hippocrates, On the Sacred Disease


"That there is a close connexion between a state of consciousness and the brain we do not dispute. But there is also a close connexion between a coat and the nail on which it hangs, for, if the nail is pulled out, the coat falls to the ground. Shall we say, then, that the shape of the nail gives us the shape of the coat, or in any way corresponds to it ?" --Matter and Memory (1896) by Henri Bergson

Related e

Wikipedia
Wiktionary
Shop


Featured:

The brain is the center of the nervous system in all vertebrate and most invertebrate animals—only a few invertebrates such as sponges, jellyfish, adult sea squirts and starfish do not have one, even if diffuse neural tissue is present. It is located in the head, usually close to the primary sensory organs for such senses as vision, hearing, balance, taste, and smell. The brain of a vertebrate is the most complex organ of its body. In a typical human the cerebral cortex (the largest part) is estimated to contain 15–33 billion neurons, each connected by synapses to several thousand other neurons. These neurons communicate with one another by means of long protoplasmic fibers called axons, which carry trains of signal pulses called action potentials to distant parts of the brain or body targeting specific recipient cells.

From an evolutionary-biological point of view, the function of the brain is to exert centralized control over the other organs of the body. The brain acts on the rest of the body either by generating patterns of muscle activity or by driving secretion of chemicals called hormones. This centralized control allows rapid and coordinated responses to changes in the environment. Some basic types of responsiveness such as reflexes can be mediated by the spinal cord or peripheral ganglia, but sophisticated purposeful control of behavior based on complex sensory input requires the information-integrating capabilities of a centralized brain.

From a philosophical point of view, what makes the brain special in comparison to other organs is that it forms the physical structure that generates the mind. As Hippocrates put it in "On the Sacred Disease": "Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations." In the early part of psychology, the mind was thought to be separate from the brain. However, after early scientists conducted experiments it was determined that the mind was a component of a functioning brain that expressed certain behaviours based on the external environment and the development of the organism. The mechanisms by which brain activity gives rise to consciousness and thought have been very challenging to understand: despite rapid scientific progress, much about how the brain works remains a mystery. The operations of individual brain cells are now understood in considerable detail, but the way they cooperate in ensembles of millions has been very difficult to decipher. The most promising approaches treat the brain as a biological computer, very different in mechanism from electronic computers, but similar in the sense that it acquires information from the surrounding world, stores it, and processes it in a variety of ways.

This article compares the properties of brains across the entire range of animal species, with the greatest attention to vertebrates. It deals with the human brain insofar as it shares the properties of other brains. The ways in which the human brain differs from other brains are covered in the human brain article. Several topics that might be covered here are instead covered there because much more can be said about them in a human context. The most important is brain disease and the effects of brain damage, covered in the human brain article because the most common diseases of the human brain either do not show up in other species, or else manifest themselves in different ways.

History

History of neuroscience

Early philosophers were divided as to whether the seat of the soul lies in the brain or heart. Aristotle favored the heart, and thought that the function of the brain was merely to cool the blood. Democritus, the inventor of the atomic theory of matter, argued for a three-part soul, with intellect in the head, emotion in the heart, and lust near the liver. Hippocrates, the "father of medicine", came down unequivocally in favor of the brain. In his treatise on epilepsy he wrote:

Men ought to know that from nothing else but the brain come joys, delights, laughter and sports, and sorrows, griefs, despondency, and lamentations. ... And by the same organ we become mad and delirious, and fears and terrors assail us, some by night, and some by day, and dreams and untimely wanderings, and cares that are not suitable, and ignorance of present circumstances, desuetude, and unskillfulness. All these things we endure from the brain, when it is not healthy...
Hippocrates, On the Sacred Disease

The Roman physician Galen also argued for the importance of the brain, and theorized in some depth about how it might work. Galen traced out the anatomical relationships among brain, nerves, and muscles, demonstrating that all muscles in the body are connected to the brain through a branching network of nerves. He postulated that nerves activate muscles mechanically by carrying a mysterious substance he called pneumata psychikon, usually translated as "animal spirits". Galen's ideas were widely known during the Middle Ages, but not much further progress came until the Renaissance, when detailed anatomical study resumed, combined with the theoretical speculations of René Descartes and those who followed him. Descartes, like Galen, thought of the nervous system in hydraulic terms. He believed that the highest cognitive functions are carried out by a non-physical res cogitans, but that the majority of behaviors of humans, and all behaviors of animals, could be explained mechanistically.

The first real progress toward a modern understanding of nervous function, though, came from the investigations of Luigi Galvani, who discovered that a shock of static electricity applied to an exposed nerve of a dead frog could cause its leg to contract. Since that time, each major advance in understanding has followed more or less directly from the development of a new technique of investigation. Until the early years of the 20th century, the most important advances were derived from new methods for staining cells. Particularly critical was the invention of the Golgi stain, which (when correctly used) stains only a small fraction of neurons, but stains them in their entirety, including cell body, dendrites, and axon. Without such a stain, brain tissue under a microscope appears as an impenetrable tangle of protoplasmic fibers, in which it is impossible to determine any structure. In the hands of Camillo Golgi, and especially of the Spanish neuroanatomist Santiago Ramón y Cajal, the new stain revealed hundreds of distinct types of neurons, each with its own unique dendritic structure and pattern of connectivity.


In the first half of the 20th century, advances in electronics enabled investigation of the electrical properties of nerve cells, culminating in work by Alan Hodgkin, Andrew Huxley, and others on the biophysics of the action potential, and the work of Bernard Katz and others on the electrochemistry of the synapse. These studies complemented the anatomical picture with a conception of the brain as a dynamic entity. Reflecting the new understanding, in 1942 Charles Sherrington visualized the workings of the brain waking from sleep:

The great topmost sheet of the mass, that where hardly a light had twinkled or moved, becomes now a sparkling field of rhythmic flashing points with trains of traveling sparks hurrying hither and thither. The brain is waking and with it the mind is returning. It is as if the Milky Way entered upon some cosmic dance. Swiftly the head mass becomes an enchanted loom where millions of flashing shuttles weave a dissolving pattern, always a meaningful pattern though never an abiding one; a shifting harmony of subpatterns.
—Sherrington, 1942, Man on his Nature

In the second half of the 20th century, developments in chemistry, electron microscopy, genetics, computer science, functional brain imaging, and other fields progressively opened new windows into brain structure and function. In the United States, the 1990s were officially designated as the "Decade of the Brain" to commemorate advances made in brain research, and to promote funding for such research.

In the 21st century, these trends have continued, and several new approaches have come into prominence, including multielectrode recording, which allows the activity of many brain cells to be recorded all at the same time; genetic engineering, which allows molecular components of the brain to be altered experimentally; and genomics, which allows variations in brain structure to be correlated with variations in DNA properties.

See also





Unless indicated otherwise, the text in this article is either based on Wikipedia article "Brain" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools