Uncertainty principle  

From The Art and Popular Culture Encyclopedia

(Difference between revisions)
Jump to: navigation, search
Revision as of 16:21, 16 November 2008
Jahsonic (Talk | contribs)

← Previous diff
Revision as of 16:21, 16 November 2008
Jahsonic (Talk | contribs)

Next diff →
Line 1: Line 1:
{{Template}} {{Template}}
 +
 +In [[quantum physics]], the '''[[Werner Heisenberg|Heisenberg]] uncertainty principle''' states that the values of certain pairs of conjugate variables (position and momentum, for instance) cannot both be known with arbitrary precision. That is, the more precisely one variable is known, the less precisely the other is known. This is not a statement about the limitations of a researcher's ability to measure particular quantities of a system, but rather about the nature of the system itself.
 +
 +In quantum mechanics, the particle is described by a wave, like in the ocean. The position is where the wave is concentrated and the momentum, a measure of the velocity, is the wavelength. The position is uncertain to the degree that the wave is spread out, and the momentum is uncertain to the degree that the wavelength is ill-defined.
 +
 +The only kind of wave with a definite position is concentrated at one point, and such a wave has an indefinite wavelength. Conversely, the only kind of wave with a definite wavelength is an infinite regular periodic oscillation over all space, which has no definite position. So in quantum mechanics, there are no states which describe a particle with both a definite position and a definite momentum. The narrower the probability distribution is for the position, the wider it is in momentum.
 +
 +The uncertainty principle requires that when the position of an atom is measured, the measurement process will leave the momentum of the atom changed by an uncertain amount inversely proportional to the accuracy of the measurement. The amount of uncertainty can never be reduced below the limit, no matter what the measurement process.
 +
 +This means that the uncertainty principle is related to the [[Observer effect (physics)|observer effect]], with which it is often [[conflated]]. In the [[Copenhagen interpretation]] of quantum mechanics, the uncertainty principle is the theoretical lower limit of how small the observer effect can be.
 +
{{GFDL}} {{GFDL}}

Revision as of 16:21, 16 November 2008

Related e

Wikipedia
Wiktionary
Shop


Featured:

In quantum physics, the Heisenberg uncertainty principle states that the values of certain pairs of conjugate variables (position and momentum, for instance) cannot both be known with arbitrary precision. That is, the more precisely one variable is known, the less precisely the other is known. This is not a statement about the limitations of a researcher's ability to measure particular quantities of a system, but rather about the nature of the system itself.

In quantum mechanics, the particle is described by a wave, like in the ocean. The position is where the wave is concentrated and the momentum, a measure of the velocity, is the wavelength. The position is uncertain to the degree that the wave is spread out, and the momentum is uncertain to the degree that the wavelength is ill-defined.

The only kind of wave with a definite position is concentrated at one point, and such a wave has an indefinite wavelength. Conversely, the only kind of wave with a definite wavelength is an infinite regular periodic oscillation over all space, which has no definite position. So in quantum mechanics, there are no states which describe a particle with both a definite position and a definite momentum. The narrower the probability distribution is for the position, the wider it is in momentum.

The uncertainty principle requires that when the position of an atom is measured, the measurement process will leave the momentum of the atom changed by an uncertain amount inversely proportional to the accuracy of the measurement. The amount of uncertainty can never be reduced below the limit, no matter what the measurement process.

This means that the uncertainty principle is related to the observer effect, with which it is often conflated. In the Copenhagen interpretation of quantum mechanics, the uncertainty principle is the theoretical lower limit of how small the observer effect can be.




Unless indicated otherwise, the text in this article is either based on Wikipedia article "Uncertainty principle" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools